

COMMON PRE-BOARD EXAMINATION SUBJECT: MATHEMATICS (STANDARD) (041) CLASS: X – SESSION 2022-23

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. The Question Paper has 5 Sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section **C** has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with sub parts of the values 1,1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks, 2 Questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat diagrams wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

		S	SECTION A				
	Section A o	consists of 2	0 questions of 1 mark each	•			
Q. No					Marks		
1	The value of "x" in the	factor tree is	s:				
	x						
					1		
	5						
	5						
		3					
	[2]	3					
	(a) 20	-) 150	(a) 100	(4) 50			
		o) 150	(c) 100	(d) 50			
2	The discriminant of the equation $6x^2 - bx + 2 = 0$ is 1. The value of 'b' is						
	` ,	b) -7	(c) ±7	(d) $\pm\sqrt{7}$	1		
3	The graph of the polynomial p(x) intersects the x-axis three times in distinct						
	points, then which of the following could be an expression for p(x):						
	(a) $4 - 4x - x^2 + x^3$		(b) $3x^2 + 3x - 3$				
	(c) 3x + 3		(d) $x^2 - 9$		1		
4	The pair of linear equations $x-2y = 5$ and $2x - 4y = 10$ has						
	(a) Infinitely many solu	utions	(b) No solutions	` '			
	(c) One solution		(d) Two solutions				

5	The distance of the point (2,3) from the y-axis is	1					
	(a) 2units (b) 3 units (c) 4 units (d) 1	unit					
6	In the given figure, in Δ XYZ, DE \parallel YZ, so that the lengths of sides XD, XE and EZ (in centimeters) are 2.4, 3.2 and 4.8 respectively. Then the length of XY (in centimeters) is:						
	(a) 1.6 (b) 6 (c) 6.4 (d) 3	3.6					
	$_{\mathrm{Y}}$						
7	If $\sin \alpha = \frac{\sqrt{3}}{2}$ and $\cos \beta = \frac{\sqrt{3}}{2}$, then the value of $\beta - \alpha$ is	1					
	(a) 0° (b) 90° (c) 60° (d) 30°						
8	If $\cos A = \frac{3}{5}$ then the value of $\tan A$ is	1					
	(a) $\frac{3}{4}$ (b) $\frac{4}{5}$ (c) $\frac{4}{3}$	<u>5</u>					
9	In \triangle ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{ED}$, then they will be similar when	1					
		∠ A = ∠F					
10	In \triangle ABC and \triangle DEF, \angle B = \angle E, \angle F = \angle C and AB = 3DE, then the triangle	es are 1					
	(a) similar but not congruent (b) congruent but not similar						
	(c) neither congruent nor similar (d) congruent as well as similar						
11	A quadrilateral ABCD is drawn to circumscribe a circle. If AB = 12 cm,	1					
	BC = 15 cm and CD = 14 cm, then AD is (a) 10 cm						
12	(a) 10 cm (b) 11 cm (c) 12 cm (d) 14 cm If the ratio of the circumference of two circles is 4:9, then the ratio of their						
	areas is						
	(a) 9:4 (b) 4:9 (c) 2:3 (d) 1	16:81					
13	If the edge of a cube is increased by 50%, then the percentage increase in their surface area is						
	(a) 25% (b) 50% (c) 75% (d) 1	125%					
14	If the mode of the following data is 7, then the value of 'k' in						
	2, 4, 6, 7, 5, 6, 10, 6, 7, 2k+1, 9, 7, 13 is						
	(a) 3 (b) 7 (c) 4 (d)	-					
15	The area of a circle that can be inscribed in a square of side 6 cm is	1					
16		9 9 π cm^2 servation 1					
10	A data has 25 observations (arranged in descending order). Which observation represents the median?						
) 1 st					
17	An event is likely to happen. Its probability is closest to						
10		0.099					
18	The value of ($\sin 45^{\circ}\cos 30^{\circ} + \cos 45^{\circ}\sin 30^{\circ}$) is (a) $\frac{\sqrt{3+1}}{\sqrt{2}}$ (b) $\frac{\sqrt{3}}{\sqrt{2}}$ (c) $\frac{\sqrt{3+1}}{2\sqrt{2}}$ ((d) $\frac{\sqrt{3}-1}{2\sqrt{2}}$					

19	Assertion: If the HCF of two numbers is 5 and their product is 150, then their	1
	LCM is 30.	
	Reason: For any two positive integers a and b, HCF (a, b) + LCM (a, b) = a x b (a)Both Assertion (A) and Reason (R) are true and Reason (R) is the correct	
	explanation of Assertion (A)	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct	
	explanation of Assertion (A)	
	(c) Assertion (A) is true but Reason (R) is false.	
	(d) Assertion (A) is false but Reason (R) is true.	
20	Assertion (A): The value of 'y' is 3, if the distance between the points P (2, -3) and Q (10, y) is 10	1
	Reason (R): Distance between any 2 points is given by	
	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct	
	explanation of Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct	
	explanation of Assertion (A).	
	(c) Assertion (A) is true but Reason (R) is false. (d) Assertion (A) is false but Reason (R) is true.	
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	T
21	For which values of <i>p</i> does the pair of equations given below has unique	2
	solution?	
	4x + py + 8 = 0	
22	2x + 2y + 2 = 0 In the given figure, ABCD is a trapezium in which AB DC. The diagonals AC	2
22		
	and DB intersect at O. Prove that $\frac{AO}{CO} = \frac{OB}{OD}$	
	A B	
23	In the given figure, TP and TQ are tangents from T to the circle with centre O and R is	2
	any point on the circle. If AB is a tangent to the circle at R, Prove that: TA + AR = TB + BR	
	Prove that: IA + AR = IB + BR	
	A	
	$O \cdot R$	
	QB	
24	If $tan\theta = \frac{1}{\sqrt{5}}$, then find the value of $\frac{cosec^2\theta - sec^2\theta}{cosec^2\theta + sec^2\theta}$	_
	Cosec ² θ+sec ² θ OR	2
	If $\sin \theta - \cos \theta = 0$, then find the value of $(\sin^4 \theta + \cos^4 \theta)$	
25	The length of the minute hand of a clock is 5 cm. Find the area swept by it	2
	during the time from 6: 05 a.m. and 6: 40 a.m.	
	OR	
	Area of a sector of a circle of radius 36 cm is $54\pi cm^2$. Find the length of the	
	corresponding arc of the sector.	
	corresponding are or the sector.	

SECTION C					
Section C consists of 6 questions of 3 marks each.	3				
and 7 respectively.					
If one zero of the polynomial $3x^2 - 8x + (2k + 1)$ is seven times the other, find both the zeroes of the polynomial and the value of k.	3				
Solve for x: $\frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{a+b+x}$	3				
Solve for x: $2\left(\frac{2x-1}{x+3}\right) - 3\left(\frac{x+3}{2x-1}\right) = 5$; given that $x \neq 3, \frac{1}{2}$	-				
Prove that $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec\theta$	3				
A circle touches the side BC of a Δ ABC at point P and touches AB and AC when					
produced at Q and R respectively. Show that AQ = $\frac{1}{2}$ perimeter of Δ ABC.	3				
OR					
Prove that the lengths of tangents drawn from an external point to a circle are equal.					
Two different dice are rolled together. Find the probability of getting					
(i) the sum of numbers on two dice as 5	3				
SECTION D					
Section D consists of 4 questions of 5 marks each					
A student scored a total of 32 marks in class tests in Mathematics and Science. If he would have scored 2 marks less in Science and 4 more in Mathematics, the product of his marks would have been 253. Find his marks in both the	5				
would have taken 1 hour less for the same journey. Find the speed of the train.					
Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.	5				
A gulab jamun contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm. OR The height of the cone is 30 cm. A small cone is cut off at the top by a plane parallel to the base. If its volume be $\frac{1}{27}$ of the volume of the given cone, at what height above the base is the section made.	5				
	Section C consists of 6 questions of 3 marks each. Find the largest number that divides 2053 and 967 and leaves a remainder of 5 and 7 respectively. If one zero of the polynomial $3x^2 - 8x + (2k + 1)$ is seven times the other, find both the zeroes of the polynomial and the value of k. Solve for x: $\frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{a + b + x}$ OR Solve for x: $2\left(\frac{2x - 1}{x + 3}\right) - 3\left(\frac{x + 3}{2x - 1}\right) = 5$; given that $x \neq 3, \frac{1}{2}$ Prove that $\sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}} + \sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = 2 \sec\theta$ A circle touches the side BC of a Λ ABC at point P and touches AB and AC when produced at Q and R respectively. Show that $AQ = \frac{1}{2}$ perimeter of Δ ABC. OR Prove that the lengths of tangents drawn from an external point to a circle are equal. Two different dice are rolled together. Find the probability of getting (i) the sum of numbers on two dice as 5 (ii) even numbers on both dice SECTION D Section D consists of 4 questions of 5 marks each A student scored a total of 32 marks in class tests in Mathematics and Science. If he would have scored 2 marks less in Science and 4 more in Mathematics, the product of his marks would have been 253. Find his marks in both the subjects. OR A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio. A gulab jamun contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm. OR The height of the cone is 30 cm. A small cone is cut off at the top by a plane				

35	The following table shows the marks obtained by 100 students of class X in a school during a particular academic session. Find the mode of this distribution.									
	Marks	Less	Less	Less	Less	Less	Less	Less	Less	5
	6:	than 10	than 20	than 30	than 40	than 50	than 60	than 70	than 80	
	fi	7	21	34	46	66	77	92	100	
					SECTION	E				
	Case study-based questions are compulsory									
36	Amit wants to buy a car and plans to take loan from a bank for his car. He repays his									
	total loan of ₹1,18,000 by paying every month starting with the first instalment of ₹1000. If he increases the instalment by ₹100 every month, answer the following:									
		the increas ne amount			•	•	:h, answei	r the follo	wing:	1
		al instalme					e last inst	alment?		1
	1	ılate the ar								2
			-		OR					
	Find	Find the ratio of the 1st instalment to the last instalment.								
37	-	a circular _l						wo diame	trically	
	opposite	exit gates	P and Q.	The locati	ion of exit	gate 'P' is	s (5, 3).			
	(i) Find t	he location	n of evit a	ate '∩'						1
(i) Find the location of exit gate 'Q' (ii) In what ratio does the center O (3, 3) divide the line segment joining the						1				
	points P and Q?									
(iii) What will be the distance between two exit ga					gates P a	nd Q?			_	
	OR What will be the distance between O and P?						2			
	VVIId	it will be tr	ie distanc	e betwee	n O and P	ſ				
38		P	30° 45°	75	i m					
	A lighthouse is a tower with a bright light at the top and serves as a navigational aid and warns ships of dangerous areas. In the given figure, a man									
	on top of a 75 m high lighthouse is observing two ships approaching towards									
	its base. Observe the figure carefully and answer the following.									
(i) Find the distance of ship C from the foot of th					_				1	
	(ii) Find the distance of ship B from the foot of the lighthouse.						1			
	(iii) Find the distance between the two ships.									
	OR What would have been the distance between the two ships if the ships							2		
	VVIIC	at vv dala i	IUAC DCC	i tile disi	Larice Del	. VV CCII CIIC	C LVV O SIII	אס וו נווכ	כקוויט	1